
f11 – Sparse Linear Algebra Introduction – f11

Chapter f11 – Sparse Linear Algebra

1. Scope of the Chapter

This chapter provides routines for the iterative solution of large sparse nonsymmetric and symmetric
systems of simultaneous linear equations.

2. Background

This section is only a brief introduction to the solution of sparse linear systems. For a more detailed
discussion see for example Duff et al. (1986) for direct methods, or Barrett et al. (1994) for iterative
methods.

2.1. Sparse Matrices and Their Storage

A matrix A may be described as sparse if the number of zero elements is sufficiently large that it
is worthwhile using algorithms which avoid computations involving zero elements.

If A is sparse, and the chosen algorithm requires the matrix coefficients to be stored, a significant
saving in storage can often be made by storing only non-zero elements. A number of different
formats may be used to represent sparse matrices economically. These differ according to the
amount of storage required, the amount of indirect addressing required for fundamental operations
such as matrix–vector products, and their suitability for vector and/or parallel architectures. For
a survey of some of these storage formats see Barrett et al. (1994).

Only two storage schemes are used by the routines in this chapter. These are coordinate storage
(CS) format and symmetric coordinate storage (SCS) format. These formats specify no ordering of
the array elements, but some routines may impose a specific ordering. For example, the non-zero
elements may be required to be ordered by increasing row index and by increasing column index
within each row, as in the example in Section 2.1.1. below. A utility routine is provided to order
the elements appropriately. With these storage formats it is possible to enter duplicate elements.
These may be interpreted in various ways (raising an error, ignoring all but the first entry, all but
the last, or summing, for example).

2.1.1. Coordinate Storage (CS) Format

This storage format represents a sparse nonsymmetric matrix A, with nnz non-zero elements, in
terms of a real array a and two integer arrays irow and icol. These arrays are all of rank 1 and of
dimension at least nnz. a contains the non-zero elements themselves, while irow and icol store the
corresponding row and column indices respectively.
For example, the matrix

A =




1 2 −1 −1 −3
0 −1 0 0 −4
3 0 0 0 2
2 0 4 1 1

−2 0 0 0 1




might be represented in the arrays a, irow and icol as

a = (1, 2,−1,−1,−3,−1,−4, 3, 2, 2, 4, 1, 1,−2, 1)

irow = (1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5)

icol = (1, 2, 3, 4, 5, 2, 5, 1, 5, 1, 3, 4, 5, 1, 5)

2.1.2. Symmetric Coordinate Storage (SCS) Format

This storage format represents a sparse symmetric matrix A, with nnz non-zero lower triangular
elements, in terms of a real array a and two integer arrays irow and icol. These arrays are all of

[NP3275/5/pdf] 3.intro-f11.1



Introduction – f11 NAG C Library Manual

rank 1 and of dimension at least nnz. a contains the non-zero lower triangular elements themselves,
while irow and icol store the corresponding row and column indices respectively.

For example, the matrix

A =




4 1 0 0 −1 2
1 5 0 2 0 0
0 0 2 1 0 −1
0 2 1 3 1 0

−1 0 0 1 4 0
2 0 −1 0 0 3




might be represented in the arrays a, irow and icol as

a = (4, 1, 5, 2, 2, 1, 3,−1, 1, 4, 2,−1, 3)

irow = (1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6)

icol = (1, 1, 2, 3, 2, 3, 4, 1, 4, 5, 1, 3, 6)

2.2. Iterative Methods

Iterative methods for the solution of the linear algebraic system

Ax = b, (1)

aim to determine the solution vector x through a sequence of approximations, until some user-
specified termination criterion is met or until some predefined maximum number of iterations has
been carried out. The number of iterations required for convergence is not generally known in
advance, as it depends on the accuracy required, and on the matrix A — its sparsity pattern,
conditioning and eigenvalue spectrum.

Faster convergence can often be achieved using a preconditioner (Golub and Van Loan (1989),
Barrett et al. (1994)). A preconditioner maps the original system of equations onto a different
system

Āx̄ = b̄, (2)

which hopefully exhibits better convergence characteristics: for example, the condition number of
the matrix Ā may be better than that of A, or it may have eigenvalues of greater multiplicity.

An unsuitable preconditioner or no preconditioning at all may result in a very slow rate or
lack of convergence. However, preconditioning involves a trade-off between the reduction in
the number of iterations required for convergence and the additional computational costs per
iteration. Also, setting up a preconditioner may involve non-negligible overheads. The application
of preconditioners to nonsymmetric and symmetric systems of equations is further considered in
Section 2.3 and 2.4.

2.3. Iterative Methods for Nonsymmetric Linear Systems

Many of the most effective iterative methods for the solution of (1) lie in the class of non-stationary
Krylov subspace methods (Barrett et al. (1994)). For nonsymmetric matrices this class includes
the restarted generalized minimum residual (RGMRES) method (Paige and Saunders (1975)),
conjugate gradient squared (CGS) method (Sonneveld (1989)), and stabilized bi-conjugate gradient
(Bi-CGSTAB) method (van der Vorst (1989), and Sleijpen and Fokkema (1993)). Here we just give
a brief overview of these algorithms as implemented in this chapter.
RGMRES is based on the Arnoldi method, which explicitly generates an orthogonal basis for the
Krylov subspace span{Akr0}, k = 0, 1, 2, . . ., where r0 is the initial residual. The solution is
then expanded onto the orthogonal basis so as to minimize the residual norm. For nonsymmetric
matrices the generation of the basis requires a ‘long’ recurrence relation, resulting in prohibitive
computational and storage costs.

3.intro-f11.2 [NP3275/5/pdf]



f11 – Sparse Linear Algebra Introduction – f11

RGMRES limits these costs by restarting the Arnoldi process from the latest available residual
every m iterations. The value of m is chosen in advance and is fixed throughout the computation.
Unfortunately, an optimum value of m cannot easily be predicted.

CGS is a development of the bi-conjugate gradient method where the nonsymmetric Lanczos method
is applied to reduce the coefficient matrix to real tridiagonal form: two bi-orthogonal sequences
of vectors are generated starting from the initial residual r0 and from the shadow residual r̂0

corresponding to the arbitrary problem AT x̂ = b̂, where b̂ is chosen so that r0 = r̂0. In the course of
the iteration, the residual and shadow residual ri = Pi(A)r0 and r̂i = Pi(A

T )r̂0 are generated, where
Pi is a polynomial of order i, and bi-orthogonality is exploited by computing the vector product
ρi = (r̂i, ri) = (Pi(A

T )r̂0, Pi(A)r0) = (r̂0, P
2
i (A)r0). Applying the ‘contraction’ operator Pi(A)

twice, the iteration coefficients can still be recovered without advancing the solution of the shadow
problem, which is of no interest. The CGS method often provides fast convergence; however, there
is no reason why the contraction operator should also reduce the once reduced vector Pi(A)r0: this
can lead to a highly irregular convergence.

Bi-CGSTAB (�) is similar to the CGS method. However, instead of generating the sequence
{P 2

i (A)r0}, it generates the sequence {Qi(A)Pi(A)r0} where the Qi(A) are polynomials chosen
to minimize the residual after the application of the contraction operator Pi(A). Two main steps
can be identified for each iteration: an OR (Orthogonal Residuals) step where a basis of order
� is generated by a Bi-CG iteration and an MR (Minimum Residuals) step where the residual
is minimized over the basis generated, by a method akin to GMRES. For � = 1, the method
corresponds to the Bi-CGSTAB method of van der Vorst (van der Vorst (1989)). For � > 1, more
information about complex eigenvalues of the iteration matrix can be taken into account, and this
may lead to improved convergence and robustness. However, as � increases, numerical instabilities
may arise.

Faster convergence can usually be achieved by using a preconditioner. A left preconditioner M−1

can be used by the RGMRES and CGS methods, such that Ā = M−1A ∼ In in (2), where In is the
identity matrix of order n; a right preconditioner M−1 can be used by the Bi-CGSTAB (�) method,
such that Ā = AM−1 ∼ In. These are formal definitions, used only in the design of the algorithms;
in practice, only the means to compute the matrix–vector products v = Au and v = AT u (the
latter only being required when an estimate of ‖A‖1 or ‖A‖∞ is computed internally), and to solve
the preconditioning equations Mv = u are required, that is, explicit information about M , or its
inverse is not required at any stage.

Preconditioning matrices M are typically based on incomplete factorizations (Meijerink and van
der Vorst (1981)), or on the approximate inverses occurring in stationary iterative methods (Young
(1971)). A common example is the incomplete LU factorization

M = PLDUQ = A − R

where L is lower triangular with unit diagonal elements, D is diagonal, U is upper triangular
with unit diagonals, P and Q are permutation matrices, and R is a remainder matrix. A zero-fill
incomplete LU factorization is one for which the matrix

S = P (L + D + U)Q

has the same pattern of non-zero entries as A. This is obtained by discarding any fill elements (non-
zero elements of S arising during the factorization in locations where A has zero elements). Allowing
some of these fill elements to be kept rather than discarded generally increases the accuracy of the
factorization at the expense of some loss of sparsity. For further details see (Barrett et al. (1994)).

2.4. Iterative Methods for Symmetric Linear Systems

Two of the best known iterative methods applicable to symmetric linear systems are the conjugate
gradient (CG) method (Hestenes and Stiefel (1952), and Golub and Van Loan (1989)) and a Lanczos
type method based on SYMMLQ (Paige and Saunders (1975)).

For the CG method the matrix A should ideally be positive-definite. The application of CG to
indefinite matrices may lead to failure, or to lack of convergence. The SYMMLQ method is suitable
for both positive-definite and indefinite symmetric matrices. It is more robust than CG, but less
efficient when A is positive-definite.

[NP3275/5/pdf] 3.intro-f11.3



Introduction – f11 NAG C Library Manual

Both methods start from the residual r0 = b − Ax0, where x0 is an initial estimate for the
solution (often x0 = 0), and generate an orthogonal basis for the Krylov subspace span{Akr0},
for k = 0, 1, . . . , by means of three-term recurrence relations (Golub and Van Loan (1989)). A
sequence of symmetric tridiagonal matrices {Tk} is also generated. Here and in the following, the
index k denotes the iteration count. The resulting symmetric tridiagonal systems of equations are
usually more easily solved than the original problem. A sequence of solution iterates {xk} is thus
generated such that the sequence of the norms of the residuals {‖rk‖} converges to a required
tolerance. Note that, in general, the convergence is not monotonic.

In exact arithmetic, after n iterations, this process is equivalent to an orthogonal reduction
of A to symmetric tridiagonal form, Tn = QT AQ; the solution xn would thus achieve exact
convergence. In finite-precision arithmetic, cancellation and round-off errors accumulate causing
loss of orthogonality. These methods must therefore be viewed as genuinely iterative methods, able
to converge to a solution within a prescribed tolerance.

The orthogonal basis is not formed explicitly in either method. The basic difference between the two
methods lies in the method of solution of the resulting symmetric tridiagonal systems of equations:
the CG method is equivalent to carrying out an LDLT (Cholesky) factorization whereas the Lanczos
method (SYMMLQ) uses an LQ factorization.

A preconditioner for these methods must be symmetric and positive-definite, i.e., representable
by M = EET , where M is non-singular, and such that Ā = E−1AE−T ∼ In in (2), where In

is the identity matrix of order n. These are formal definitions, used only in the design of the
algorithms; in practice, only the means to compute the matrix-vector products v = Au and to solve
the preconditioning equations Mv = u are required.

Preconditioning matrices M are typically based on incomplete factorizations (Meijerink J and van
der Vorst H (1977)), or on the approximate inverses occurring in stationary iterative methods
(Young (1971)). A common example is the incomplete Cholesky factorization

M = PLDLT PT = A − R

where P is a permutation matrix, L is lower triangular with unit diagonal elements, D is diagonal
and R is a remainder matrix. A zero-fill incomplete Cholesky factorization is one for which the
matrix

S = P (L + D + LT )PT

has the same pattern of non-zero entries as A. This is obtained by discarding any fill elements (non-
zero elements of S arising during the factorization in locations where A has zero elements). Allowing
some of these fill elements to be kept rather than discarded generally increases the accuracy of the
factorization at the expense of some loss of sparsity. For further details see Barrett et al. (1994).

2.5. Routines for Nonsymmetric Linear Systems

All routines for nonsymmetric linear systems in this chapter use the coordinate storage (CS) format
described in Section 2.1.1.

In general it is not possible to recommend one of these methods in preference to another. RMGRES
is popular but requires the most storage, and can easily stagnate when the size m of the orthogonal
basis is too small, or the preconditioner is not good enough. CGS can be the fastest method,
but the computed residuals can exhibit instability which may greatly affect the convergence and
quality of the solution. Bi-CGSTAB(�) seems robust and reliable, but it can be slower than the
other methods. Some further discussion of the relative merits of these methods can be found in
Barrett et al. (1994).
Routine nag sparse nsym fac (f11dac) computes a preconditioning matrix based on incomplete LU
factorisation. The amount of fill-in occurring in the incomplete factorisation can be controlled by
specifying either the level of fill or the drop tolerance. Partial or complete pivoting may optionally
be employed and the factorisation can be modified to preserve row-sums.

Routine nag sparse nsym fac sol (f11dcc) uses the incomplete preconditioning matrix generated by
nag sparse nsym fac (f11dac) to solve a sparse nonsymmetric linear system, using RMGRES, CGS,
or Bi-CGSTAB(�).

3.intro-f11.4 [NP3275/5/pdf]



f11 – Sparse Linear Algebra Introduction – f11

Routine nag sparse nsym sol (f11dec) is similar to nag sparse nsym fac sol (f11dcc) but has options
for no preconditioning, SSOR preconditioning or Jacobi preconditioning.

The utility routine nag sparse nsym sort (f11zac) orders the non-zero elements of a sparse
nonsymmetric matrix stored in general CS format.

2.6. Routines for Symmetric Linear Systems

All routines for symmetric linear systems in this chapter use the symmetric coordinate storage
(SCS) format described in Section 2.1.2.

Routine nag sparse sym chol fac (f11jac) computes a preconditioning matrix based on incomplete
Cholesky factorisation. The amount of fill-in occurring in the incomplete factorisation can be
controlled by specifying either the level of fill or the drop tolerance. Partial or complete pivoting
may optionally be employed and the factorisation can be modified to preserve row-sums.

Routine nag sparse sym chol sol (f11jcc) uses the incomplete preconditioning matrix generated
by nag sparse sym chol fac (f11jac) to solve a sparse symmetric linear system, using a conjugate
gradient or Lanczos method.

Routine nag sparse sym sol (f11jec) is similar to nag sparse nsym sol (f11dec) but has options for
no preconditioning, SSOR preconditioning or Jacobi preconditioning.

The utility routine nag sparse sym sort (f11zbc) orders the non-zero elements of a symmetric matrix
stored in general SCS format.

3. References

Barrett R, Berry M, Chan T F, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C
and van der Vorst H (1994) Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods SIAM, Philadelphia.

Duff I S, Erisman A M, Reid J K (1986) Direct Methods for Sparse Matrices Oxford University
Press, Oxford.

Golub G H and Van Loan C F (1989) Matrix Computations Johns Hopkins University Press (2nd
Edition), Baltimore.

Hestenes M and Stiefel E (1952) Methods of conjugate gradients for solving linear systems J. Res.
Nat. Bur. Stand. 49 409–436.

Meijerink J and van der Vorst H (1977) An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix Math. Comput. 31 148–162.

Paige C C and Saunders M A (1975) Solution of sparse indefinite systems of linear equations SIAM
J. Numer. Anal. 12 617–629.

Saad Y and Schultz M (1986) GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 7 856–869.

Sleijpen G L G and Fokkema D R (1993) BiCGSTAB(�) for linear equations involving matrices
with complex spectrum ETNA 1 11–32.

Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems SIAM J. Sci.
Statist. Comput. 10 36–52.

van der Vorst H (1989) Bi-CGSTAB, A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems SIAM J. Sci. Statist. Comput. 13 631–644.

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York.

4. Available Functions

Routines for nonsymmetric linear systems:
RGMRES, CGS or Bi-CGSTAB(�) solver with incomplete LU preconditioning f11dcc
RGMRES, CGS or Bi-CGSTAB(�) solver with Jacobi, SSOR, or no preconditioning f11dec
Incomplete LU factorization f11dac
Sort routine for nonsymmetric matrices in CS format f11zac

Routines for symmetric linear systems:
CG or SYMMLQ solver with incomplete Cholesky preconditioning f11jcc
CG or SYMMLQ solver with Jacobi, SSOR, or no preconditioning f11jec
Incomplete Cholesky factorization f11jac
Sort routine for symmetric matrices in SCS format f11zbc

[NP3275/5/pdf] 3.intro-f11.5


